平平无奇的博客
分享经济学知识
Hi,请  登录  或  注册

一文读懂伪回归、协整、格兰杰因果检验

本文于 2020-02-28 00:16 更新,已是最新版。

一、什么叫做伪回归

若是所建立的回归模型在经济意义上没有因果关系,那么这个就是伪回归,例如路边小树年增长率和国民经济年增长率之间存在很大的相关系数,但是建立的模型却是伪回归。如果你直接用数据回归,那肯定存在正相关,而其实这个是没有意义的回归。

二、平稳性检验

单位根检验是序列的平稳性检验,如果不检验序列的平稳性直接OLS容易导致伪回归。

当检验的数据是平稳的(即不存在单位根),即意思是单位根检验的原假设是存在单位根,存在单位根,则不平稳,等价关系! 要想进一步考察变量的因果联系,可以采用格兰杰因果检验。

平稳性检验有3个作用:1)检验平稳性,若平稳,做格兰杰检验,非平稳,作协正检验。2)协整检验中要用到每个序列的单整阶数。

当检验的数据是非平稳(即存在单位根),并且各个序列是同阶单整(协整检验的前提),想进一步确定变量之间是否存在协整关系,可以进行协整检验,协整检验主要有EG两步法和JJ检验 (1)、EG两步法是基于回归残差的检验,可以通过建立OLS模型检验其残差平稳性 (2)、JJ检验是基于回归系数的检验。

单位根检验方法步骤

在eviews中,ADF检验的方法:1 view—unit roottest,出现对话框,默认的选项为变量的原阶序列检验平稳性,确认后,若ADF检验的P值小于0.5,拒绝原假设,说明序列是平稳的,若P值大于0.5,接受原假设,说明序列是非平稳的;2 重复刚才的步骤,view—unit root test,出现对话框,选择1stdifference,即对变量的一阶差分序列做平稳性检验,和第一步中的检验标准相同,若P值小于0.5,说明是一阶平稳,若P值大于0.5,则继续进行二阶差分序列的平稳性检验。

虽然定义经过d阶差分后是平稳的,但是软件只提供到2阶差分,若是原始数据没有经过差分就平稳,则说明那是零阶单整,记为I(0)的过程。

在stata中,单位根检验命令为:dfuller lnagdp,建议help dfuller等。

先做单位根检验,看变量序列是否平稳序列。

若平稳,可构造回归模型等经典计量经济学模型;若非平稳,进行差分,当进行到第d次差分时序列平稳,则服从d阶单整(注意趋势、截距不同情况选择,根据P值和原假设判定)。

若所有检验序列均服从同阶单整,可构造VAR模型,做协整检验(注意滞后期的选择),判断模型内部变量间是否存在协整关系,即是否存在长期均衡关系。如果有,则可以构造VEC模型或者进行Granger因果检验,检验变量之间“谁引起谁变化”,即因果关系。

关于截距、趋势选择问题,请大家看图,view,graph,若是有时间趋势,则选择截距和趋势;若是围绕0波动,则选择具有截距;若是没有上述情况,选择none。

ADF单位根检验是检验数据的平稳性,或是说单整阶数。

协整是说两个或多个变量之间具有长期的稳定关系。但变量间协整的必要条件是它们之间是同阶单整,也就是说在进行协整检验之前必须进行单位根检验。

协整说的是变量之间存在长期的稳定关系,这只是从数量上得到的结论,但不能确定谁是因,谁是果。而因果关系检验解决的就是这个问题。

单位根检验是检验时间序列是否平稳,协整是在时间序列平稳性的基础上做长期趋势的分析,而格兰杰检验一般是在建立误差修正模型后,所建立的短期的因果关系。故顺序自然是先做单位根检验,再过协整检验,最后是格兰杰因果检验。

单位根检验是对时间序列平稳性的检验,只有平稳的时间序列,才能进行计量分析,否则会出现伪回归现象;协整是考察两个或者多个变量之间的长期平稳关系;格兰杰因果检验是考察变量之间的因果关系,协整说明长期稳定关系不一定是因果关系,所以需要在通过格兰杰因果检验确定两者的因果关系。顺序一般是单位根检验,通过后如果同阶单整,在进行协整,然后在进行因果检验。要特别注意的是:只有同阶单整才能进行协整。

三、什么是协整

协整检验是用来分析变量之间的长期均衡关系,在协整分析两变量的过程中,如果自变量和因变量是协整的,我们就可以确信这两变量不会产生伪回归结果并且这两个变量存在长期稳定的关系。

协整的要求或前提是同阶单整,但也有如下的宽限说法:如果变量个数多于两个,即解释变量个数多于一个,被解释变量的单整阶数不能高于任何一个解释变量的单整阶数。另当解释变量的单整阶数高于被解释变量的单整阶数时,则必须至少有两个解释变量的单整阶数高于被解释变量的单整阶数。如果只含有两个解释变量,则两个变量的单整阶数应该相同。

就是说,单整阶数不同的两个或以上的非平稳序列如果一起进行协整检验,必然有某些低阶单整的,即波动相对高阶序列的波动甚微弱(有可能波动幅度也不同)的序列,对协整结果的影响不大,因此包不包含的重要性不大。而相对处于最高阶序列,由于其波动较大,对回归残差的平稳性带来极大的影响,所以如果协整是包含有某些高阶单整序列的话(但如果所有变量都是阶数相同的高阶,此时也被称作同阶单整,这样的话另当别论),一定不能将其纳入协整检验。

选定你需要检验的series as group ,然后view/conintergrationtest…

四、格兰杰因果

格兰杰因果检验是检验统计上的时间先后顺序,并不表示而这真正存在因果关系,是否呈因果关系需要根据理论、经验和模型来判定。

关于格兰杰因果检验若X都不是Y的格兰杰原因,这并不是说X与Y之间毫无关系。格兰杰因果检验本身也不是真实意义上检验变量的因果关系,而只是检验变量在统计上的时间先后顺序。

格兰杰检验只能用于平稳序列!这是格兰杰检验的前提,而其因果关系并非我们通常理解的因与果的关系,而是说x的前期变化能有效地解释y的变化,所以称其为“格兰杰原因”。

转载自搜狐 计量经济学服务中心

赞(1) 打赏
转载请注明出处:平平无奇的博客 ppwq.net » 一文读懂伪回归、协整、格兰杰因果检验

评论 抢沙发

平平无奇的博客 ppwq.net

专业的经济学博客,分享最新学习心得

联系我们会员中心

觉得文章有用就打赏一下文章作者吧

非常感谢你的打赏,我们将继续给力更多优质内容,让我们一起创建更加美好的网络世界!

支付宝扫一扫

微信扫一扫

登录

找回密码

注册